Vacuum pyrolysis of waste tires with basic additives.
نویسندگان
چکیده
Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na2CO3, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 degrees C to 600 degrees C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 degrees C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 degrees C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) approximately 205 degrees C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na2CO3 addition. Pyrolysis gas was mainly composed of H2, CO, CH4, CO2, C2H4 and C2H6. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.
منابع مشابه
Removal of No2 on Active Carbons Obtained from Waste Tires
Introduction The production of scrap tires only in the EU, USA and Japan is around 6 million tones per year. As the associated automotive industries grow the huge quantity of waste tires presently produced in the world will certainly increase in the future [1]. Thus the disposal of scrap tires becomes a serious environmental problem. The production of activated carbons from solid wastes is one ...
متن کاملMicrowave Absorption Properties of Tires
.................................................................................................... 9 Chapter 1: Introduction ........................................................................ 10 1.1 The waste tire ............................................................................. 10 1.2 Methods for recycling waste tires ............................................. 13 1.2.1 L...
متن کاملProduction of Liquid Fuel from Pyrolysis of WasteTires
Worldwide energy crisis forced the researchers to explore for new and alternate sources of energy. For the developing countries this problems are acute. Generation of any kind of waste is a problem to the environment. Some wastes have the characteristics of producing energy by different thermochemical conversion. In the present work, waste tires were pyrolysed in a fixed bed reactor. The influe...
متن کاملCatalytic Pyrolysis of Waste Tyre Rubber into Hydrocarbons Via Base Catalysts
The waste tyres represent a source of energy and valuable hydrocarbon products. Waste tyres were pyrolysed catalytically in a batch reactor under atmospheric pressure. The effects of basic catalysts (MgO and CaCO3) were studied on the pyrolysis products. The distribution ratio of gas, liquid and char with MgO and CaCO3 were 24.4:39.8:35.8 wt % and 32.5:32.2:35.2 wt % r...
متن کاملVacuum residue upgrading by pyrolysis-catalysis procedure over mesoporous ZSM-5 zeolite
A systematic study of two-staged upgrading process of vacuum residue for light fuel production has been carried out in a semi-batch binary reactor apparatus over Y, ZSM-5 and alkaline treated ZSM-5 zeolites. Prepared catalyst samples were characterized with XRD and BET. Density and Viscosity physical properties parameters estimation, as well as GC/SIMDIS analyses were conducted on liquid produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Waste management
دوره 28 11 شماره
صفحات -
تاریخ انتشار 2008